Need for Data Processing Naturally Leads to Fuzzy Logic (and Neural Networks): Fuzzy Beyond Experts and Beyond Probabilities

نویسندگان

  • Vladik Kreinovich
  • Hung T. Nguyen
  • Songsak Sriboonchitta
چکیده

Fuzzy techniques have been originally designed to describe imprecise (“fuzzy”) expert knowledge. Somewhat surprisingly, fuzzy techniques have also been successfully used in situations without expert knowledge, when all we have is data. In this paper, we explain this surprising phenomenon by showing that the need for optimal processing of data (including crisp data) naturally leads to fuzzy and neural data processing techniques. This result shows the potential of fuzzy data processing. To maximally utilize this potential, we need to provide an operational meaning of the corresponding fuzzy degrees. We show that such a meaning can be extracted from the above justification of fuzzy techniques. It turns out that, in contrast to probabilistic uncertainty, the natural operational meaning of fuzzy degrees is indirect – similarly to the operational meaning of geometry and physics in General Relativity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Effective Data Extraction from Large Scale Signal Processing Systems using Statistical Methods on Fuzzy Variable based Neural Networks

Large Scale Signal Processing systems are incapable of storing and working on data which change at high frequencies with large differences in the operating range. This paper looks at an easier method of solving this problem by constructing dynamic fuzzy logic based neural networks after sampling the data using through Bayesian classifier based probabilities. This technique has also been extende...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

بررسی افتراقی مننژیت باکتریال از انواع دیگر مننژیت به روش منطق فازی و شبکه ی عصبی

Background and Aim: Bacterial meningitis detection is a complicated problem because of having several components in order to be diagnosed and distinguished from other types of meningitis. Fuzzy logic and neural network, frequently used in expert systems, are able to distinguish such diseases. The purpose of this paper is to compare Fuzzy logic and artificial neural networks for distinguishing b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2016